A model reduction method for biochemical reaction networks
نویسندگان
چکیده
منابع مشابه
Numerical modeling for nonlinear biochemical reaction networks
Nowadays, numerical models have great importance in every field of science, especially for solving the nonlinear differential equations, partial differential equations, biochemical reactions, etc. The total time evolution of the reactant concentrations in the basic enzyme-substrate reaction is simulated by the Runge-Kutta of order four (RK4) and by nonstandard finite difference (NSFD) method. A...
متن کاملModel reduction of biochemical reaction networks by tropical analysis methods
We discuss a method of approximate model reduction for networks of biochemical reactions. This method can be applied to networks with polynomial or rational reaction rates and whose parameters are given by their orders of magnitude. In order to obtain reduced models we solve the problem of tropical equilibration that is a system of equations in max-plus algebra. In the case of networks with non...
متن کاملA Dimension Reduction Method for Inferring Biochemical Networks
We present herein an extension of an algebraic statistical method for inferring biochemical reaction networks from experimental data, proposed recently in [3]. This extension allows us to analyze reaction networks that are not necessarily full-dimensional, i.e., the dimension of their stoichiometric space is smaller than the number of species. Specifically, we propose to augment the original al...
متن کاملReduction for Stochastic Biochemical Reaction Networks with Multiscale Conservations
Biochemical reaction networks frequently consist of species evolving on multiple timescales. Stochastic simulations of such networks are often computationally challenging and therefore various methods have been developed to obtain sensible stochastic approximations on the timescale of interest. One of the rigorous and popular approaches is the multiscale approximation method for continuous time...
متن کاملA Geometric Method for Model Reduction of Biochemical Networks with Polynomial Rate Functions.
Model reduction of biochemical networks relies on the knowledge of slow and fast variables. We provide a geometric method, based on the Newton polytope, to identify slow variables of a biochemical network with polynomial rate functions. The gist of the method is the notion of tropical equilibration that provides approximate descriptions of slow invariant manifolds. Compared to extant numerical ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Systems Biology
سال: 2014
ISSN: 1752-0509
DOI: 10.1186/1752-0509-8-52